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SUMMARY 

In this article we discuss the fictitious domain solution of the Navier-Stokes equations modelling unsteady 
incompressible viscous flow. The method is based on a Lagrange multiplier treatment of the boundary 
conditions to be satisfied and is particularly well suited to the treatment of no-slip boundary conditions. This 
approach allows the use of structured meshes and fast specialized solvers for problems on complicated 
geometries. Another interesting feature of the fictitious domain approach is that it allows the solution of 
optimal shape problems without regriding. The resulting methodology is applied to the solution of flow 
problems including external incompressible viscous flow modelled by the Navier-Stokes equations and then 
to an optimal shape problem for Stokes and Navier-Stokes flow. 
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1. INTRODUCTION 

Fictitious domain methods for partial differential equations are showing interesting possibilities 
for solving complicated problems motivated by applications from Science and Engineering (see, 
for example, References 1 and 2 for some impressive illustrations of the above statement). The 
main reason for the popularity of fictitious domain methods (sometimes called domain embedding 
methods; cf. Reference 3 )  is that they allow the use of fairly structured meshes on a simple shape 
auxiliary domain containing the actual one. This allows the use of fast solvers. 

In this article, which follows References 4-6, we consider the fictitious domain solution of the 
Navier-Stokes equations modelling the unsteady flow of incompressible Newtonian viscous 
fluids and apply the resulting methodology to the solution of optimal shape problems for Stokes 
and Navier-Stokes flows. 

Since the methods discussed here are a generalization of the Lagrange multiplier-based 
techniques described in Reference 4, we shall first discuss the fictitious domain solution of linear 
Dirichlet problems, then show how it generalizes to the Navier-Stokes equations. Finally, we 
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combine these ideas with non-linear programming algorithms to solve optimal shape problems 
for Stokes and Navier-Stokes flows. 

The methods discussed here go far beyond the related work in Reference 7 where only the 
steady Stokes problem was considered (in the particular case where the boundary of the actual 
domain is compatible with the finite element mesh used in the auxiliary domain). The methods 
described in the following sections do not require a strong coupling between the actual boundary 
discretization and the grid used in the auxiliary domain. It also relies on the splitting methods 
described in, e.g., References 8-12; with these methods one can decouple the numerical treatments 
of the incompressibility and of the advection, and take the advantage of this fact to use the 
embedding approach in the (linear) incompressibility step only, the advection being treated in the 
larger domain without concern-in some sense-for the actual boundary. 

The content of this article is as follows: In Section 2 we consider the Dirichlet problem; then in 
Section 3 we consider the simulation of external incompressible viscous flow modelled by 
Navier-Stokes equations with Neumann downstream boundary condition. In Section 4 we 
address the fictitious domain solution of optimal shape problems for Stokes and Navier-Stokes 
flows. Finally, in Section 5 we conclude the paper with some observations and comments on 
future work. 

2. A FICTITIOUS DOMAIN METHOD FOR THE DIRICHLET PROBLEM 

2.1. A model problem 

that y is Lipschitz-continuous. We consider the following Dirichlet problem: 

Given f E H -  ‘(a), g E H”’(y), find afunction u such that 

Let o be a bounded domain of Rd(d 3 1)  and let us denote by y its boundary do; we suppose 

au - vAu = f i n  o (1)  
u = g o n y  

where a 2 0 and v > 0. Problem (1) has a unique solution u in H’(o) .  

2.2. A fictitious domain formulation 

For simplicity, we shall assume from now on that f~ L2(w). A fictitious domain method was 
already proposed for problem (1) in Reference 4. This method is as follows: let us consider a ‘box’ 
R which is a domain in Rd such that o cc R (see Figure 1) and denote by the boundary of R. 

Problem (1) is equivalent to the following problem: 

Find (17, A} E V x  L2(y) such that 

IQ(ct6u + vV6.Vv)dx = fudx + Audy, V u  E V s11- s, 
jy - 9)dy = 0, V P  E L2(Y) 

(2) 

wheref; L’(R) and satisfiesfl, = fand  V is a well chosen closed subspace of H I @ ) .  Natural 
choices for V are H’ (a), H i @ ) ,  and 

H:(Q) = { u  1 u E H’(R), u is periodic at r} 
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Figure 1 

In (2) let u I ,  E H h ( o )  and u = 0 in Q\o, then ii satisfies 
n 

(aiio + vVG.Vu)dx = f idx,  V U  E HA(o)  

Also we have ii = g on y. Thus iilo is the solution of problem (1). The reciprocal property is also 
quite easy to prove; it is essentially based on Green’s theorem. More precisely, in (2), we have that 
the multiplier II  is equal to v[aii/an]l, (i.e., v times the jump of the normal derivative of ii at y). 
Remark 2.1. By using penalization technique, we can obtain another fictitious domain formula- 
tion for the Dirichlet problem (l), namely 

Find fi, E V such that 

{Q(aii,u + vVii,-Vu)dx + - ii,udy t: s, 
where, in (3), E > 0. It can be easily shown (see, e.g., Appendix 1 in Reference 8) that 

lim 11 6, - u 11 (o) = 0 &*O 

where u is the solution of (1). 

(3) 

2.3. Conjugate gradient solution and preconditioning 

Applying the general conjugate gradient methodology to problem (2), we obtain 

Lo E L2(y) given (4) 
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solve 
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Find uo E V such that 

[n(auou + vVuo.Vu)dx = 

(5)  

and then 

For n 0, assuming that P,g", wn are known, compute P+ ' , gn t l ,  w"", as follows: 
solve 

compute 

set 

Find U" E V such that 

In(aunu + vVu".Vu)dx = 

(9) 

and then solve 

If ( / gn+ l  (/L2(y)/(/go((L2(y) d E ,  take 2 = L"+l, ii = u"+l; if not compute 
n + l  2 

Y n  = II 9 11L2(y)/Il9" I l t Z ( Y )  

and set 

W"+1 = gn+l + ynwn (14) 

Do n = n + 1 and go to (8) 
Remark 2.2. For the cases where o c R2 with a smooth boundary y ,  we have obtained a quasi- 
optimal preconditioner for the conjugate gradient algorithm (4)-( 14) by Fourier Analysis (see 
Reference 4). 
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2.4. Finite element implementation 

a 
V 

The finite element implementation of the above conjugate gradient algorithms (4)-( 14) is 
straightforward modification. For the space V occurring in problem (2), we have taken 
= Hb(R). For the finite-dimensional subspaces, Vh c V and Ah c Lz(y), we took 

where y), is a triangulation of R (see, e.g., Figure 2) and P1 is the space of the polynomials in 
2 variables of degree < 1 and 

Ah = { ph I ph = constant on the segment joining 2 consecutive mesh points on y } .  (16) 

The mesh on y can be uniform as visualized in Figure 2 (where we have shown the mesh points 
on y), but this is not a necessity. The numerical results which have been obtained clearly suggest 
that both L2(w)-error and L“(o)-error are second-order accurate. Moreover, in the absence of 
a preconditioner the number of conjugate gradient iterations increases as h-”’. This is what we 
expect from a theoretical point of view; with preconditioning the number of iterations is ‘almost’ 
constant, as shown in Reference 4. The above method has been applied to the solution of 
three-dimensional problems, still showing second-order a c c ~ r a c y . ~  
Remark 2.3. Compared to previous domain embedding methods our method does not require 
the adjustment of the mesh to the geometry of o and y. Indeed the spaces vh and A,, are largely 
independent and it is strongly advised to define Ah from the intrinsic geometrical properties of y. 
This is particularly well suited to these situations where o is subjected to rigid body motions. Of 
course the fact that vh is defined from a structured triangulation of R provides substantial 
simplification to the numerical implementation on parallel machines.’ 

Figure 2. Mesh for V, with h = 1/16 and mesh on y (Q = (0,l)’) 



700 R. GLOWINSKI ET AL. 

3. EXTERNAL INCOMPRESSIBLE VISCOUS FLOW 

In Reference 5, we have considered external incompressible viscous flow modelled by the 
Navier-Stokes equations with Dirichlet downstream boundary conditions. In this section we 
would like to consider the problem with Neumann boundary conditions downstream since they 
are less reflecting than the Dirichlet boundary conditions. 

3.1. The Navier-Stokes equations 

Using the notation in Figure 3, we consider the following problem: 

(17) 
a U  

at 
- - VVU + (u.V)u + V p  = f in 52\13 

V . u = O  inR\I3  

u(x,O) = uo(x), x E 52\I3, (with V - u ,  = 0) 

au 
u = g o  on To, v - - n p = g ,  on rl an 

u = g 2  on y (21) 
In (17)-(21), Q and o are bounded domains in Rd(d 3 2) (see Figure 3), r (resp., y)  is the boundary 
of 52 (resp., o) with T = To u rl, To n rl  = 8. And Jr, dT > 0, n is the outer normal unit vector 
at rl, u = {ui ) i I f  is the flow velocity, p is the pressure, f is a density of external forces, v (  > 0) is 
a viscosity parameter, and 

To obtain the equivalent fictitious domain formulation for the Navier-Stokes equations, we 
embed 52\G in 52 and define 

V,, = {v I v E (H' (Q) )d ,  v = go on r,} 
V , = ( v l v ~ ( H ~ ( S Z ) ) ~ , ~ = 0 o n ~ , }  

fl = (L2(Y))d 

n 

I 

ro 
Figure 3 
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We observe that if Uo is an extension of uo with V. Uo = 0 in R, and ifTis an extension off, we 
have equivalence between (17)-(21) and the following problem: 
For t > 0, find U(t) E V,,, P(t) E L2(Q), A(t) E A such that 

(25) A-vdy, V v ~ V ~ , a . e . t > O  

V.U(t) = 0 in R (26) 

U(x, 0) = Uo(x), x E s1, (with V - Uo = 0) (27) 

U(t) = gz(t) on y (28) 

in the sense that UlQ,6 = u, PlQ,6 = p. 
Concerning the multiplier I ,  its interpretation is very simple since it is equal to the jump of 

au 
an 

v--nP 

at y. A closely related approach (limited to the steady Stokes problem) is discussed in Reference 7. 
We observe that the effect of the actual geometry is concentrated on Jy I .vdy in the right-hand 
side of (25), and on (28). 

3.2. Time discretization by operator splitting 

To solve (25)-(28), we shall consider a time discretization by an operator splitting method, like 
the ones discussed in e.g., References 8-12. With these methods we are able to decouple the 
non-linearity and the incompressibility in the Navier-Stokes/fictitious domain problems 
(25)-(28). In the following, we consider the time discretization of (25)-(28) by the &scheme (cf. 
Reference 12) with A t  > 0 a time discretization step. Let 

Vgg = {v I v E v = go(sAt) on ro> (29) 

(30) 

We obtain the following scheme: 

Uo = Uo is given 

for n 0, knowing U", find Un+' E Vg;+#, P"" E L2(R), I"+' E A such that 
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next find U"f' -e  E Vg,+ I - a  such that 

finally, find U n + '  E Vgttl, P"+' E L2(R), 2''' E A such that 

V.U"+ '=O i n 0  (36) 

on Y (37) Un+l = g;+l 

wherea + /I = 1,0 < a,f l  < 1 and0 < 8 < 112. With thechoiceof8 = 1 - l,,h,a = 2 -,,hand 
p = & - 1, the time discretization seems to be unconditionally stable (see Reference 12). 

In Section 3.3 the conjugate gradient solution of the Stokesljctitious domain problems (3 1)-(33) 
and (35)-(37) shall be discussed. Concerning problem (34) it is worth noticing that we have been 
taking advantage of the time discretization by operator splitting to treat the advection in the 
larger domain R without concern-in some sense-for the constraint u = g at y. Problem (34) can 
be solved by least-squares methods" and is also well suited to solution methods based on 
higher-order upwinding on regular meshes, or on the backward method of characteristics (see, 
e.g., Reference 14). 
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3.3. Iterative solution to the Stokeslfictitious domain problem 

problem: 
Find U E V,,, P E L2(R), i E A such that 

Problems (31)-(33) and (35)-(37) are particular cases of the following Stokes/fictitious domain 

a j b u - v d x  + v VU-Vvdx - PV-vdx sn sn (38) 

= JQf-vdx + i i - v d y  + J r ,g , -vdr ,  V v € V O  

V.U=O i n n  (39) 

U = g 2  o n y  (40) 

where, in (38), a( =- 0) is the reciprocal of a partial time step. In this saddle-point system, P (resp., 
1) appear to be a Lagrange multiplier associated with (39) (resp., (40)). 

We can solve the above saddle-point system (38)-(40) by a conjugate gradient algorithm called 
a one-shot method driven by the pressure P and the multiplier A, simultaneously. 

Let us consider a bilinear form b ( . ; ) ,  symmetric and strongly elliptic over A. The following 
algorithm is a one-shot method driven by the multipliers P and i: 

{Po, no}  E L2(R) x A given (41) 
solve the following Dirichlet problem: 

Find Uo E V,,, such that 

a j Q U o . v d x  + v 

+ 1 Y IlO.vdy + lQPoV-vdx  + [r,g,.vdT, V V E V ~  

set 

r: = V.Uo, r: = (Uo - g2)17 

and define go = { gy , g;} as follows 

g: = C q b O  + vr: 

with 4' the solution of 

- A C $ ~ = ~ Y  in R 

(43) 

(44) 

(45) 

(46) 

(47) 

We take 
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solve 

Find U" E Vo, such that 

set 

and define g" = (g;,g;} as follows: 

with @ the solution of 

a@ - = o  onr,,; @ = ~ o n r ,  
an 

and set 

If 

(49) 

(50) 
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take P = P"+' ,  U = U"" and A = ? + I .  If not, compute 

and set 

w n +  1 = g" + ynw" 

Do n = n + 1 and go back to (48). 

We may choose 

b(A,p)= A-pdy, V A , ~ E A  s, 
If we do so, the one shot method described here combines the conjugate gradient method for 

the Dirichlet problem discussed in Section 2.3 with the quasi-optimal preconditioned conjugate 
gradient method for solving the Stokes problem described in Reference 12. 

3.4. Numerical experiments 

We consider the test problems where o is a NACAOO12 airfoil with zero degree or 5 degrees 
angle of attack centered at (0,O) and R is (-0.625,0*625) x (-0.5,0.5) (see Figure 4) where the 
chord length of NACA0012 is 0.35. The boundary conditions are defined as follows: 

au  
an 

v - - n n p = O  o n r ,  

where c is a positive constant. 
As a finite dimensional subspace of V, we choose 

vh = { v h  1 vh E HAh HAh} 

where 

{ ~ h I ~ h E c o ( n ) , 6 h I T E P l , v T E y h ,  6h=Oon l-0) 

y h  is a triangulation of R (see, e.g., Figure 5), P1 being the space of the polynomials in xl, x2 of 
degree d 1. A traditional way of approximating the pressure is to take it in the space 

H i h  = { 4 h l  $h E c0(a), 4 h  IT E PI, v T E  % h }  

where &h is a triangulation twice coarser than y h .  Concerning the space Ah approximating A, we 
define it by 

Ah = {ph 1 ph E (L" (~%O))~ ,  p h  is constant on the segment joining 2 consecutive mesh points on ao} 

A particular choice for the mesh points on y is visualized on Figure 5. A choice of the mesh points 
on y depends on the distribution of the curvature of y. Around the leading edge, we have to put 
more mesh points there. Also at the trailing edge, we have to choose mesh points carefully. With 
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3 

Figure 4 

Figure 5. Mesh of y where ‘0’ are the mesh points on y and part of the triangulation of 0 with meshsize h = 1/128 

a bad choice of mesh points on y (e.g., an uniform mesh on y) ,  the Dirichlet boundary condition 
can not be matched very well for the case where the ratio of 01 and v in (38) is of the order lo8. 

The numerical results have been obtained for Reynolds number 1000 (taking the chord of 
airfoil as characteristic length) with meshsizes h, = 1/256 for velocity and h, = 1/128 for pressure, 
time step At = 0.0025 and c in (63) is 20. In Plate 1, angle of attack is zero degree and the vorticity 
and stream function distributions are almost symmetric with respect to the x direction for the part 
of the flow behind the airfoil. For the case where angle of attack is 5 degrees, the Kurman uortex 
shedding occurs (see Plates 2 and 3). The local enlargement of streamlines distribution around 
NACA0012 of Plates 2 and 3 are shown in Figures 6 and 7. 

4. SHAPE OPTIMIZATION OF THE BOUNDARY 

Shape optimization problems governed by partial differential equations have always been 
problems of interest leading to many interesting applications (see for example References 15 and 
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attaw 

Figure 7. Local enlargement from Plate 3 of the streamlines distribution around NACA0012 with 5 degrees angle of 
attack 

16). Recently, people have tried to apply the fictitious domain approach to these problems (see for 
example Reference 17). In this section we discuss a fictitious domain approach to a shape 
optimization problem for Stokes and Navier-Stokes equations in two space dimensions. The 
shape of a symmetric aerofoil is given by its boundary y. We fix the chord length of the aerofoil 
and then parameterize the shape of the wing by 5 parameters, say xi, where i = 1,.  . . , 5. By 
indulging in a slight abuse of notation we can write the boundary, y, as a function of these 
5 parameters. These parameters define the upper (and lower by symmetry) part of the aerofoil by 

y ( K )  = ((Xl,X2)lX2(Xi) = 5p(K1X:’2 -k K2X1 -k K 3 X f  -k KqX: 4- KgXf)) (65) 

where xl, x2 are the co-ordinates of the upper portion of the boundary of the aerofoil lying above 
the portion of the wing marked by the c in the figure below (see Figure 8). Here p is a thickness 
parameter (for the NACA0012 we take p = 0.12). The aerofoil is extended to be of length c’ (see 
Figure 8) by a closed trailing edge (see Reference 18 for further details). 
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I I 

C 

I I 

C' 
Figure 8 

The NACAOO 12 is described by the parameter values, 

K* = (0.2969, -0.126, -0.3516,0.2843, -0.1015) (66) 

For every set of parameter values K ,  we can employ the ideas and methodology from the 
preceding sections of this paper to simulate Stokes and Navier-Stokes flow over the aerofoil 
whose shape is described by a given set of parameters, K. This simulation yields a velocity field 
and a pressure distribution. Let p* denote the pressure distribution associated with the 
NACAOO12 values for K* in (66), hence p *  is our target. Let P ( K )  represent the pressure 
distribution associated with an arbitrary set of parameters K .  We formulate the inverse problem of 
choosing K to fit p* in the least-squares sense, subject to certain physical constraints. This 
problem can be formulated as a non-linear programming problem (NLP), namely 

min K IIp - p* I I L l c , ,  subject to K ( K )  < 0 (67) 

The constraint K ( K )  in (67) implements the following constraints: 
Any aerofoil whose upper and lower surface intersect in more than two places (the two 

endpoints of the aerofoil) is infeasible. This can be guaranteed by requiring that ( E ,  - x2 I,) < 0 
for any x2 not an endpoint of the aerofoil. Here E,  is a positive minimum aerofoil thickness 
parameter (for instance, we take E,  = Also included in the constraint function, K ,  are 
obvious physical upper and lower bounds on the volume of the aerofoil, o, the arclength, y, and 
the slopes dy/dxl and dy/dx2 away from the two endpoints of the aerofoil (see Reference 15 for an 
overview of problems of this type). 

In practice, these constraints save computational work by keeping the minimization procedure 
away from obviously impossible aerofoil shapes that yield very small objective function values. It 
is worth noting that for this particular test problem there are no binding constraints at the 
solution (i.e K ( K * )  < 0). 

4.1. Optimization technique 

While it may be possible to calculate derivatives of the objective function in (67) such 
a calculation would be extremely expensive and possibly inaccurate. An additional difficulty with 
using derivatives in the solution of (67) are its many local minimizers and inflection points. 
Finally, we would enjoy the luxury of using algorithm that allowed us to replace the smooth 
least-squares objective function in (67) with a continuous but non-differentiable one (for instance 
an L" objective function). 
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Algorithms for unconstrained minimization that require no derivative information (usually 
referred to as direct search or pattern search methods) are not new (see, for example, Reference 19 
and the references therein). In Reference 20 an algorithm for unconstrained optimization that 
requires no derivative information was suggested. A parallel implementation of the algorithm has 
also been developed and tested (see Reference 21). Recently, this algorithm and its implementa- 
tion have been modified to handle constraints (see Reference 22). The method samples points on 
the nodes of an evolving pattern, moving to the node in the pattern with the value closest to 
optimality. Depending on where in the pattern the point closest to optimality was located the 
pattern then changes, either expanding or contracting. When the pattern expands its overall size 
grows causing the algorithm to sample points farther from its current location. When the pattern 
contracts the overall size of the pattern becomes smaller; this procedure terminates when the 
lengths of the edges of the pattern fall below a user prescribed tolerance. 

Pattern search methods of this sort typically do not demonstrate rapid local convergence, but 
they are extremely robust and far less susceptible than faster higher-order methods to the 
difficulties introduced when functions are non-smooth or the data are noisy. Pattern search 
methods are usually too slow to solve optimization problems with large numbers of parameters. 
Our problem (67) is interesting in that one can accurately describe the shape of an aerofoil 
accurately with a relatively small number of parameters. The compatibility pattern search 
method with our problem (67) is also interesting. After numerous numerical tests, we have not 
failed to locate the global minimum of (67). 

4.2. Numerical example 

Our numerical example for shape optimization requires integrating equations of the form 
(17 and 18) to evaluate the objective function. Here, we only consider a zero degree angle of attack 
for these test problems. For simplicity we keep the same boundary conditions defined by (20) and 
(21). Parameter values are provided in the tables below (see Tables I and 11), except for the 
parameter c appearing in (63). We took c = 20 for all our numerical experiments. The cost 
function column displays, in fact, 

where p c  is the computed pressure. 
The minimization was performed in parallel on the Touchstone Delta machine using 16 

processors. A coarse/fine strategy was employed to solve the shape of optimization minimization; 
10 points per processor were sampled with a very large search strategy to initially a neighbour- 
hood of the solution and then 25 points per processor were sampled with a smaller pattern search 

Table I. Coarse minimization: 10 points per processor 

Function 
h" At Reynolds evaluations Cost function h, 

1 /64 1/128 2.5 x 1000 2 5  x 10' 4.9 x lo-' 
1 /64 1/128 2.5 x 500 2.5 x 10' 1.1 x 10-1 
1/32 1/64 5.0 x 1000 1.8 x 10' 5.7 x 10-1 
1/32 1/64 5.0 x 500 1.8 x 10' 1.3 x lo - '  
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Table 11. Fine minimization: 25 points per processor 

Function 
h, h” At Reynolds evaluations Cost function 

1/64 11128 2.5 x 1000 2.1 x 102 1.8 x 
1/64 11128 2 3  x 500 2.1 x 102 2.4x 10-4 
1/32 1/64 5 . 0 ~  lo00 1.5 x 10’ 5.7 10-4 
1/32 1/64 5.0 x 500 1.5 x 102 1.3 x 

strategy to polish the solution. For more details on constrained pattern search methods see 
Reference 22. 

5. CONCLUSION 

Compared to the previous results in Reference 23 it is clear that the fictitious domain methodo- 
logy that we advocate has been substantially progressing. However, there is still room for 
improvement particularly concerning the speed-up of the various iterative methods used for the 
solution of the subproblems obtained from the time splitting. Parallelization is also an important 
issue currently addressed (see Reference 13). 

It appears that the fictitious domain method provides an effective way of evaluating the 
objective function for the Stokes and Navier-Stokes flow shape optimization problem. In 
particular, the computational cost of regriding a mesh for every trial airfoil shape could be 
a prohibitive cost. Current work includes extending these ideas to more complicated objective 
functions and to the shape optimization problems associated with drag reduction. 
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