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SUMMARY

In this article we discuss the fictitious domain solution of the Navier—Stokes equations modelling unsteady
incompressible viscous flow. The method is based on a Lagrange multiplier treatment of the boundary
conditions to be satisfied and is particularly well suited to the treatment of no-slip boundary conditions. This
approach allows the use of structured meshes and fast specialized solvers for problems on complicated
geometries. Another interesting feature of the fictitious domain approach is that it allows the solution of
optimal shape problems without regriding. The resulting methodology is applied to the solution of flow
problems including external incompressible viscous flow modelled by the Navier—-Stokes equations and then
to an optimal shape problem for Stokes and Navier—Stokes flow.

KEY WORDS: fictitious domain methods; Lagrange multipliers; Navier-Stokes equations; optimal shape problems

1. INTRODUCTION

Fictitious domain methods for partial differential equations are showing interesting possibilities
for solving complicated problems motivated by applications from Science and Engineering (see,
for example, References 1 and 2 for some impressive illustrations of the above statement). The
main reason for the popularity of fictitious domain methods (sometimes called domain embedding
methods; cf. Reference 3) is that they allow the use of fairly structured meshes on a simple shape
auxiliary domain containing the actual one. This allows the us¢ of fast solvers.

In this article, which follows References 4-6, we consider the fictitious domain solution of the
Navier—Stokes equations modelling the unsteady flow of incompressible Newtonian viscous
fluids and apply the resulting methodology to the solution of optimal shape problems for Stokes
and Navier—Stokes flows.

Since the methods discussed here are a generalization of the Lagrange multiplier-based
techniques described in Reference 4, we shall first discuss the fictitious domain solution of linear
Dirichlet probiems, then show how it generalizes to the Navier-Stokes equations. Finally, we
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combine these ideas with non-linear programming algorithms to solve optimal shape problems
for Stokes and Navier—Stokes flows.

The methods discussed here go far beyond the related work in Reference 7 where only the
steady Stokes problem was considered (in the particular case where the boundary of the actual
domain is compatible with the finite element mesh used in the auxiliary domain). The methods
described in the following sections do not require a strong coupling between the actual boundary
discretization and the grid used in the auxiliary domain. It also relies on the splitting methods
described in, e.g., References 8-12; with these methods one can decouple the numerical treatments
of the incompressibility and of the advection, and take the advantage of this fact to use the
embedding approach in the (linear) incompressibility step only, the advection being treated in the
larger domain without concern—in some sense—for the actual boundary.

The content of this article is as follows: In Section 2 we consider the Dirichlet problem; then in
Section 3 we consider the simulation of external incompressible viscous flow modelled by
Navier-Stokes equations with Neumann downstream boundary condition. In Section 4 we
address the fictitious domain solution of optimal shape problems for Stokes and Navier—Stokes
flows. Finally, in Section 5 we conclude the paper with some observations and comments on
future work.

2. A FICTITIOUS DOMAIN METHOD FOR THE DIRICHLET PROBLEM

2.1. A model problem

Let @ be a bounded domain of R*(d > 1) and let us denote by y its boundary dw; we suppose
that v is Lipschitz-continuous. We consider the following Dirichlet problem:

Given fe H™ Y(w), ge HY(y), find a function u such that
ou —vAu=finw (1)
u=gony

where « > 0 and v > 0. Problem (1) has a unique solution u in H'(w).

2.2. A fictitious domain formulation

For simplicity, we shall assume from now on that fe L*(w). A fictitious domain method was
already proposed for problem (1) in Reference 4. This method is as follows: let us consider a ‘box’
Q which is a domain in R? such that @ =< Q (see Figure 1) and denote by I' the boundary of Q.

Problem (1) is equivalent to the following problem:

Find {@i,A} € V x L*(y) such that

J (adiv + vVii- Vo)dx = J
Q

Q

ﬁ:dx+flvdy, VoeV (2)
Y

f i — g)dy =0, YueL2(y)

where f~ e L*(Q) and satisfies f~|a, =fand V is a well chosen closed subspace of H!(Q). Natural
choices for V are H'(Q), H3(Q), and

H}Q) = {v|ve H'(Q), v is periodic at I'}
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Figure 1

In (2) let v|, € Hj(w) and v = 0 in Q\ @, then @ satisfies
J (aiv + vVii- Vo)dx = J fodx, Vve Hb(w)
Q @

Also we have i = g on y. Thus |, is the solution of problem (1). The reciprocal property is also
quite easy to prove; it is essentially based on Green’s theorem. More precisely, in (2), we have that
the multiplier A is equal to v[dii/dn]|, (i.e., v times the jump of the normal derivative of i at y).
Remark 2.1. By using penalization technique, we can obtain another fictitious domain formula-
tion for the Dirichlet problem (1), namely

Find @i, € V such that

1
J (afiv + vVii, - Vo)dx + - J dvdy 3)
Q v

~ 1
=jfvdx+—jgudy, YveV
Q € Jy

where, in (3), ¢ > 0. It can be easily shown (see, e.g., Appendix 1 in Reference 8) that
!l_?(l) ”as - u“H‘(w) =0

where u is the solution of (1).

2.3. Conjugate gradient solution and preconditioning

Applying the general conjugate gradient methodology to problem (2), we obtain
2% e L%(y) given “)
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solve
Find u® € V such that
®)
j (aw®v + vVu® - Vo)dx = qudx + f A%vdy, YoeV
Q Q 7
and then
Find ¢° € L?(y) such that
(6)
j ¢°udy = J (u® — g)udy, YueL*(y)
v b
and set
w? = g°. (7

For n > 0, assuming that A", ¢", w" are known, compute A"*!,g"*',w"*', as follows:
solve

Find 4" € V such that

J (att"v + vVa"-Vo)dx = j. w'vdy, VoeV
Q

Y

compute
pn= j g2 dy / j awr dy ©)
v :
set
Al =" — p.w" (10
Wl =y — p,u" (11)

and then solve

Find g"*' € L%(y) such that

(12)
Lg"“udv = Lg"ud? — Pn Jyﬂ"udv, Ve L2(y).
If[[g"" N2n/ g% iz < & take 4 = A"*1 & = w"*1; if not compute
n= 19" 120/ 19" 1E2 ) (13)
and set
witl = g"t 4y, w” (14)

Don=n+1and go to (8)
Remark 2.2. For the cases where o = R? with a smooth boundary 7y, we have obtained a quasi-

optimal preconditioner for the conjugate gradient algorithm (4)—(14) by Fourier Analysis (see
Reference 4).
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2.4. Finite element implementation

The finite element implementation of the above conjugate gradient algorithms (4)—(14) is
a straightforward modification. For the space V' occurring in problem (2), we have taken
V = Hp(Q). For the finite-dimensional subspaces, ¥, = ¥ and A, < L(y), we took

Vi={vslvs € Vﬁco(ﬁ),UHTEPbVTth}, (15)

where 7, is a triangulation of Q (see, e.g., Figure 2) and P, is the space of the polynomials in
2 variables of degree < 1 and

Ay = { s | pn = constant on the segment joining 2 consecutive mesh points on y}. (16)

The mesh on y can be uniform as visualized in Figure 2 (where we have shown the mesh points

on ), but this is not a necessity. The numerical results which have been obtained clearly suggest
that both L?(w)-error and L®(w)-error are second-order accurate. Moreover, in the absence of
a preconditioner the number of conjugate gradient iterations increases as h~'/2. This is what we
expect from a theoretical point of view; with preconditioning the number of iterations is ‘almost’
constant, as shown in Reference 4. The above method has been applied to the solution of
three-dimensional problems, still showing second-order accuracy.’
Remark 2.3. Compared to previous domain embedding methods our method does not require
the adjustment of the mesh to the geometry of w and y. Indeed the spaces V; and A, are largely
independent and it is strongly advised to define A, from the intrinsic geometrical properties of y.
This is particularty well suited to these situations where w is subjected to rigid body motions. Of
course the fact that V, is defined from a structured triangulation of Q provides substantial
simplification to the numerical implementation on parallel machines.'?

Figure 2. Mesh for ¥, with k = 1/16 and mesh on y (Q = (0, 1)%)
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3. EXTERNAL INCOMPRESSIBLE VISCOUS FLOW

In Reference 5, we have considered external incompressible viscous flow modelled by the
Navier—Stokes equations with Dirichlet downstream boundary conditions. In this section we
would like to consider the problem with Neumann boundary conditions downstream since they
are less reflecting than the Dirichlet boundary conditions.

3.1. The Navier—Stokes equations

Using the notation in Figure 3, we consider the following problem:

%—vVu+(u-V)u+Vp=f in Q\ @ (17

V-u=0 in Q\®d (18)

u(x,0) = uy(x), xeQ\d, (with V.-uy=0) (19)
du

u=g, only, v%—np=g1 on Iy (20)

u=g, ony 21

In (17)-(21), Q and w are bounded domains in R%(d > 2) (see Figure 3), I" (resp., y) is the boundary
of Q(resp, w)withT =Ty Uy, o T, = 0. And jrl dI” > 0, n is the outer normal unit vector
at 'y, u = {u;}iZ{ is the flow velocity, p is the pressure, f is a density of external forces, v( > 0) is
a viscosity parameter, and

i=d ay }i=d
v;—
7 0X; Ji=a
To obtain the equivalent fictitious domain formulation for the Navier-Stokes equations, we
embed Q\ & in Q and define

(v-V)w={

j:

Ve = {v|ve (H'(Q)%, v =g, on Ty} (22)

Vo = {v|ve(H Q)% v=0o0nT,} (23)

A =L (4)
l-0

1

T

Figure 3
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We observe that if U, is an extension of u, with V- U, = 0in Q, and if T is an extension of f, we
have equivalence between (17)-(21) and the following problem:
For t > 0, find U(t) € V,,, P(1) € L*(Q), A(t) € A such that

ou
f —-vdx + vJ VU-Vvdx +j (U-V)U-vdx ~j PV .vdx
Qat Q Q

Q
=L?-vdx+f gl-vdl“+f/1-vdy, VveV,,ae t>0 (25)
'y ¥
V-Up) =0 inQ (26)
U(x,0) = Up(x), x€Q, (withV-U, =0) (27)
U(r) =g2() ony (28)

in the sense that Ulg\; =, Plg\s = p.
Concerning the multiplier 4, its interpretation is very simple since it is equal to the jump of

— —nP
Van n

at y. A closely related approach (limited to the steady Stokes problem) is discussed in Reference 7.
We observe that the effect of the actual geometry is concentrated on |, -vdy in the right-hand
side of (25), and on (28).

3.2. Time discretization by operator splitting

To solve (25)—(28), we shall consider a time discretization by an operator splitting method, like
the ones discussed in e.g., References 8-12. With these methods we are able to decouple the
non-linearity and the incompressibility in the Navier—Stokes/fictitious domain problems
(25)—(28). In the following, we consider the time discretization of (25)—(28) by the 6-scheme (cf.
Reference 12) with At > 0 a time discretization step. Let

Ve: = {vive (H*(Q))%, v = go(sAt) on Iy} 29

We obtain the following scheme:

U°® = U is given (30
for n > 0, knowing U”, find U"*% ¢ Voo P9 e L2(Q), A"*% € A such that
Un+0 _ Un

.vdx + cva vU"*%. yvdx

Q

o OAt

—f P"”V-vdx—fﬂ"“’-vdy
: ’ (31)
= j fro.vdx — j (U"-V)U"-vdx — ﬁvj VU”. Vvdx
Q Q Q

+ J gitl.vdll, VveV,
r,
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V-U?=0 inQ (32)
Un+9 - gp£+9 ony (33)

next find U" 17 % ¢ Vgz+:-e such that

Un+1—0 _ Un+6
J. s

1= 20)Ac -vdx+BvJVU"+l_9-Vvdx

¢

+j‘ (Un+1——9.V)Un+1—~9.vdx
Q
=J‘?"H_0-de+J‘l”+9-vd)} (34)
Q Y
—J P"“’V-vdx—avj vU"t.yvdx
Q Q

+j git1-0.vdll, VveV,
Iy

finally, find U"*! € Vnon, P"" 1 € L2(Q), A"*1 e A such that

Un+l . Un+1—9
L

0L -vdx+avf VU"* . Yvdx

Q

—J P”*lV-vdx—jl"+‘-vdy
Q y

35)
=J?n+1_vdx_J (Un+l—0.V)Un+l—9.vdx
Q Q
—ij VU"+1_0'VVdX+I gitl.vdl, VveV,
Q Iy
V-U*1=0 inQ (36)
Ul =gy"' ony (37)

wherea + f = 1,0 <o, f < 1and 0 < 8 < 1/2. With the choice of § = 1 — 1\/5,05=2— 2and

B = \/5 — 1, the time discretization seems to be unconditionally stable (see Reference 12).

In Section 3.3 the conjugate gradient solution of the Stokes/fictitious domain problems (31)~(33)
and (35)—(37) shall be discussed. Concerning problem (34) it is worth noticing that we have been
taking advantage of the time discretization by operator splitting to treat the advection in the
larger domain € without concern—in some sense—for the constraint u = g at y. Problem (34) can
be solved by least-squares methods'? and is also well suited to solution methods based on
higher-order upwinding on regular meshes, or on the backward method of characteristics (see,
e.g., Reference 14).
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3.3. Iterative solution to the Stokes/fictitious domain problem

Problems (31)—(33) and (35)—(37) are particular cases of the following Stokes/fictitious domain
problem:

Find UeV,,, P e L*(Q), 1€ A such that

go>

a[ U-vdx+vj VU-Vvdx—fPV-vdx (38)
Q Q

Q

=.[ f-.vdx+Ji-vdy+J‘ g,-vdl, VveV,
Q b I

V-U=0 inQ (39)
U=g, ony (40)

where, in (38), « ( > 0) is the reciprocal of a partial time step. In this saddle-point system, P (resp.,
1) appear to be a Lagrange multiplier associated with (39) (resp., (40)).

We can solve the above saddle-point system (38)-(40) by a conjugate gradient algorithm called
a one-shot method driven by the pressure P and the multiplier 4, simultaneously.

Let us consider a bilinear form b(:,*), symmetric and strongly elliptic over A. The following
algorithm is a one-shot method driven by the multipliers P and A:

{P%1°} e L2(Q) x A given 41)
solve the following Dirichlet probiem:
Find U° € V,,, such that
ozj U%-vdx + vj VU°.Vvdx = J f.vdx
Q Q Q (42)
+ j A%-vdy + LPOV-vdx + L g,-vdl, VveV,
v ;
set
rH=v.U°% B8=(U°’-g)l, (43)
and define g° = {g%,g3} as follows
g3 = ad® + vri (44)
with ¢° the solution of
—Ap° =7} InQ .5
ai)0=0 only; ¢°=0 onT, +
on
gleA “6)

b(g‘z’,u)=Jr2-udy, VpeA

Y

We take
wo = {wi, w3} = {g%,83} 47
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Then for n >0, assuming that {P",A"},U"r},ry,w" g" are known, compute {PrriAnt1y,

Uttt et witl gntt as follows:

solve
Find U” € V,, such that

ocJ U"-vdx + vj vU"-Vvdx
Q Q

=Jw'5-vdy +J wiVevdx, VveV,
K Q

set

and define g" = {g1,g5} as follows:

with ¢" the solution of

—Ap"=71 inQ

oo _

5n=0 onTy; ¢"=0o0nT;
gheA

b(g, n) = J r5-pdy, VpeA

14
We compute then
_ Jarigidx + | r3-gidy
T foFiwtdx + [ T5-whdy

and set
prtt = pn — paw"
Antl = gn — W3
urtl =yr — ann
ritt =1l — pat
3" =r} — a5
g1t = g1 — pudt
g3 = g% — p.83

If

ynrp{+lgrln+1dx +j‘yr3+1_grzl+ld,y
0,0 0 0 <
jﬂrlgldx +Ll‘2-g2d)}

(48)

(54)
(55)
(56)
(57)
(58)
(59)
(60)
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take P = P"*', U= U""! and 4 = A"*. If not, compute
3 jﬂrri+lgri+ldx + fyr'i+l'g3+1dy
farigidx + [ r3-ghdy

and set
wn+1 — gn + ynwn (62)
Do n=n+ 1 and go back to (48).
We may choose

bu,u)=j1-udv, ViueA

14

If we do so, the one shot method described here combines the conjugate gradient method for
the Dirichlet problem discussed in Section 2.3 with the quasi-optimal preconditioned conjugate
gradient method for solving the Stokes problem described in Reference 12.

3.4. Numerical experiments

We consider the test problems where w is a NACAQ0012 airfoil with zero degree or 5 degrees
angle of attack centered at (0,0) and Q is (—0-625,0:625) x (—0-5,0'5) (see Figure 4) where the
chord length of NACAQ012 is 0-35. The boundary conditions are defined as follows:

1
"= (l—e‘“)(O) on I’y

0 on 7 (63)
Ou
v5l—l—np=0 on T, (64)

where ¢ is a positive constant.
As a finite dimensional subspace of V, we choose

V., = {vh|vh€H(l)hXH(l)h}
where
H(l)h = {¢h|¢heco(ﬁ)a¢h|TEP1, VTeTu, ¢o=00n Iqo}

T, is a triangulation of Q (see, e.g., Figure 5), P, being the space of the polynomials in x,,x, of
degree < 1. A traditional way of approximating the pressure is to take it in the space

H%h = {¢h|¢h€ CO(Q)s¢hITEP19 VTe %h}

where 9>, is a triangulation twice coarser than 7,. Concerning the space A, approximating A, we
define it by

Ay = {1 | py € (L®(8w))?, w, is constant on the segment joining 2 consecutive mesh points on dw }

A particular choice for the mesh points on y is visualized on Figure 5. A choice of the mesh points
on y depends on the distribution of the curvature of y. Around the leading edge, we have to put
more mesh points there. Also at the trailing edge, we have to choose mesh points carefully. With
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Figure 4

Figure 5. Mesh of y where ‘0’ are the mesh points on y and part of the triangulation of Q with meshsize h = 1/128

a bad choice of mesh points on y (e.g., an uniform mesh on y), the Dirichlet boundary condition
can not be matched very well for the case where the ratio of « and v in (38) is of the order 10

The numerical results have been obtained for Reynolds number 1000 (taking the chord of
airfoil as characteristic length) with meshsizes h, = 1/256 for velocity and h, = 1/128 for pressure,
time step At = 0-0025 and c in (63) is 20. In Plate 1, angle of attack is zero degree and the vorticity
and stream function distributions are almost symmetric with respect to the x direction for the part
of the flow behind the airfoil. For the case where angle of attack is 5 degrees, the Karman vortex
shedding occurs (see Plates 2 and 3). The local enlargement of streamlines distribution around
NACAO0012 of Plates 2 and 3 are shown in Figures 6 and 7.

4. SHAPE OPTIMIZATION OF THE BOUNDARY

Shape optimization problems governed by partial differential equations have always been
problems of interest leading to many interesting applications (see for example References 15 and
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Figure 6. +ows vis - ¢ teeup Pate 2 5% the streamlines distrik:ition around NACAOQ12 with § degrees angle of
attack

Figure 7. Local enlargement from Plate 3 of the streamlines distribution around NACA0012 with 5 degrees angle of
attack

16). Recently, people have tried to apply the fictitious domain approach to these problems (see for
example Reference 17). In this section we discuss a fictitious domain approach to a shape
optimization problem for Stokes and Navier—Stokes equations in two space dimensions. The
shape of a symmetric aerofoil is given by its boundary y. We fix the chord length of the aerofoil
and then parameterize the shape of the wing by 5 parameters, say x;, where i = 1,...,5. By
indulging in a slight abuse of notation we can write the boundary, y, as a function of these
5 parameters. These parameters define the upper (and lower by symmetry) part of the aerofoil by

P() = {(x1,%2)| X2(x1) = 5p (k1 X1/ + k2% + K3xT + Kax? + KSX‘;)} (65)

where x4, x, are the co-ordinates of the upper portion of the boundary of the aerofoil lying above
the portion of the wing marked by the c in the figure below (see Figure 8). Here p is a thickness
parameter (for the NACA0012 we take p = 0-12). The aerofoil is extended to be of length ¢’ (see
Figure 8) by a closed trailing edge (sece Reference 18 for further details).
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The NACAO0012 is described by the parameter values,
k* = (0-2969, —0-126, —0-3516,0-2843, —0-1015) (66)

For every set of parameter values x, we can employ the ideas and methodology from the
preceding sections of this paper to simulate Stokes and Navier-Stokes flow over the aerofoil
whose shape is described by a given set of parameters, . This simulation yields a velocity field
and a pressure distribution. Let p* denote the pressure distribution associated with the
NACAQ012 values for x* in (66), hence p* is our target. Let p(x) represent the pressure
distribution associated with an arbitrary set of parameters k. We formulate the inverse problem of
choosing x to fit p* in the least-squares sense, subject to certain physical constraints. This
problem can be formulated as a non-linear programming problem (NLP), namely

min | p — p* |12,y subject to K(x) <0 67)

The constraint K(x) in (67) implements the following constraints:

Any aerofoil whose upper and lower surface intersect in more than two places (the two
endpoints of the aerofoil) is infeasible. This can be guaranteed by requiring that (¢, — x,],) <0
for any x, not an endpoint of the aerofoil. Here ¢, is a positive minimum aerofoil thickness
parameter (for instance, we take ¢, = 107°). Also included in the constraint function, K, are
obvious physical upper and lower bounds on the volume of the aerofoil, w, the arclength, y, and
the slopes 0y/0x; and dy/dx, away from the two endpoints of the aerofoil (see Reference 15 for an
overview of problems of this type).

In practice, these constraints save computational work by keeping the minimization procedure
away from obviously impossible aerofoil shapes that yield very small objective function values. It
is worth noting that for this particular test problem there are no binding constraints at the
solution (i.e K(x*) < 0).

4.1. Optimization technique

While it may be possible to calculate derivatives of the objective function in (67) such
a calculation would be extremely expensive and possibly inaccurate. An additional difficulty with
using derivatives in the solution of (67) are its many local minimizers and inflection points.
Finally, we would enjoy the luxury of using algorithm that allowed us to replace the smooth
least-squares objective function in (67) with a continuous but non-differentiable one (for instance
an L™ objective function).
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Algorithms for unconstrained minimization that require no derivative information (usually
referred to as direct search or pattern search methods) are not new (see, for example, Reference 19
and the references therein). In Reference 20 an algorithm for unconstrained optimization that
requires no derivative information was suggested. A parallel implementation of the algorithm has
also been developed and tested (see Reference 21). Recently, this algorithm and its implementa-
tion have been modified to handle constraints (see Reference 22). The method samples points on
the nodes of an evolving pattern, moving to the node in the pattern with the value closest to
optimality. Depending on where in the pattern the point closest to optimality was located the
pattern then changes, either expanding or contracting. When the pattern expands its overall size
grows causing the algorithm to sample points farther from its current location. When the pattern
contracts the overall size of the pattern becomes smaller; this procedure terminates when the
lengths of the edges of the pattern fall below a user prescribed tolerance.

Pattern search methods of this sort typically do not demonstrate rapid local convergence, but
they are extremely robust and far less susceptible than faster higher-order methods to the
difficulties introduced when functions are non-smooth or the data are noisy. Pattern search
methods are usually too slow to solve optimization problems with large numbers of parameters.
Our problem (67) is interesting in that one can accurately describe the shape of an aerofoil
accurately with a relatively small number of parameters. The compatibility pattern search
method with our problem (67) is also interesting. After numerous numerical tests, we have not
failed to locate the global minimum of (67).

4.2. Numerical example

Our numerical example for shape optimization requires integrating equations of the form
(17 and 18) to evaluate the objective function. Here, we only consider a zero degree angle of attack
for these test problems. For simplicity we keep the same boundary conditions defined by (20) and
(21). Parameter values are provided in the tables below (see Tables I and II), except for the
parameter ¢ appearing in (63). We took ¢ = 20 for all our numerical experiments, The cost
function column displays, in fact,

lpe — p* ”Lz(y)/”P* L2

where p, is the computed pressure.

The minimization was performed in parallel on the Touchstone Delta machine using 16
processors. A coarse/fine strategy was employed to solve the shape of optimization minimization;
10 points per processor were sampled with a very large search strategy to initially a neighbour-
hood of the solution and then 25 points per processor were sampled with a smaller pattern search

Table 1. Coarse minimization: 10 points per processor

Function
hy h, At Reynolds evaluations  Cost function
1/64 1/128 25%x1073 1000 2:5x10? 49x10"!
1/64 1/128 25%x1073 500 2:5%10? 11x107!
1/32 1/64 50x 1073 1000 1-8x 102 57x1071!

1/32 1/64 50x1073 500 1-8 x 102 13x1071
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Table II. Fine minimization: 25 points per processor

Function
hy, h, At Reynolds evaluations  Cost function
1/64 /128  2:5x 1073 1000 21x10? 18x10°4
1/64 /128 25%x107? 500 21x10? 24x107*
1/32 1/64 50x 1073 1000 15 x 10? 57x107*
1/32 1/64 50x 1073 500 15 x 10% 13%1074

strategy to polish the solution. For more details on constrained pattern search methods see
Reference 22.

5. CONCLUSION

Compared to the previous results in Reference 23 it is clear that the fictitious domain methodo-
logy that we advocate has been substantially progressing. However, there is still room for
improvement particularly concerning the speed-up of the various iterative methods used for the
solution of the subproblems obtained from the time splitting. Parallelization is also an important
issue currently addressed (see Reference 13).

It appears that the fictitious domain method provides an effective way of evaluating the
objective function for the Stokes and Navier-Stokes flow shape optimization problem. In
particular, the computational cost of regriding a mesh for every trial airfoil shape could be
a prohibitive cost. Current work includes extending these ideas to more complicated objective
functions and to the shape optimization problems associated with drag reduction.
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